Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biosci Trends ; 14(1): 23-34, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32092745

RESUMEN

The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.


Asunto(s)
Angelica/química , Melanoma Experimental/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Apoptosis , Línea Celular Tumoral , Hipertrofia , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pulmón/patología , Neoplasias Pulmonares , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/prevención & control , Raíces de Plantas/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
2.
Phytother Res ; 33(12): 3228-3241, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31486124

RESUMEN

The peel of Citrus unshiu Marcow. fruits (CU) has long been used as a traditional medicine that has therapeutic effects against pathogenic diseases, including asthma, vomiting, dyspepsia, blood circulation disorders, and various types of cancer. In this study, we investigated the effect of CU peel on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells, and in B16F10 cells inoculated-C57BL/6 mice. Our results show that ethanol extracts of CU (EECU) inhibited cell growth and increased the apoptotic cells in B16F10 cells. EECU also stimulated the induction of mitochondria-mediated intrinsic pathway, with reduced mitochondrial membrane potential and increased generation of intracellular reactive oxygen species. Furthermore, EECU suppressed the migration, invasion, and colony formation of B16F10 cells. In addition, the oral administration of EECU reduced serum lactate dehydrogenase activity without weight loss, hepatotoxicity, nor nephrotoxicity in B16F10 cell-inoculated mice. Moreover, EECU markedly suppressed lung hypertrophy, the number and expression of metastatic tumor nodules, and the expression of inflammatory tumor necrosis factor-alpha in lung tissue. In conclusion, our findings suggest that the inhibitory effect of EECU on the metastasis of melanoma indicates that it may be regarded as a potential therapeutic herbal drug for melanoma.


Asunto(s)
Citrus/química , Frutas/química , Melanoma Experimental/dietoterapia , Metástasis de la Neoplasia/tratamiento farmacológico , Animales , Apoptosis , Ratones , Ratones Endogámicos C57BL
3.
J Cancer Prev ; 24(1): 11-19, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30993090

RESUMEN

BACKGROUND: The roots of Scutellaria baicalensis Georgi (Labiatae) have been widely used in traditional medicine for treatment of various diseases. In this study, we investigated the effects of ethanol extracts of S. baicalensis roots (EESB) on the growth ofn human leukemia U937 cells. METHODS: The effect of EESB on cell viability was measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apoptosis was determined using 4,6-diamidino-2-phenyllindile staining and flow cytometry. The effects of EESB on the expression of regulatory proteins of apoptosis and phosphatidyl inositol 3-kinase (PI3K)/Akt signaling were determined by Western blotting. Caspase activity and mitochondrial membrane potential (MMP) were measured using flow cytometric analysis. RESULTS: EESB significantly inhibited the growth of U937 cells and induced apoptosis, which was associated with down-regulation of anti-apoptotic Bcl-2, up-regulation of pro-apoptotic Bax, the loss of MMP and activation of caspase-9 and -3. We also found that EESB enhanced the expression of death receptors (DRs) and their associated ligands and induced the activation of caspase-8 and truncation of Bid. In addition, EESB suppressed PI3K/Akt signaling and EESB-induced apoptosis and growth inhibition were further increased by inhibition of PI3K activity. CONCLUSIONS: Our results indicated that the pro-apoptotic effect of EESB was mediated through the activation of DR-mediated intrinsic and mitochondria-mediated extrinsic apoptosis pathways and inhibition of the PI3K/Akt signaling in U937 cells.

5.
Biol Pharm Bull ; 41(5): 713-721, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709909

RESUMEN

The fruit of Citrus unshiu MARKOVICH used for various purposes in traditional medicine has various pharmacological properties including antioxidant, anti-inflammatory, and antibacterial effects. Recently, the possibility of anti-cancer activity of the extracts or components of this fruit has been reported; however, the exact mechanism has not yet been fully understood. In this study, we evaluated the anti-proliferative effect of water extract of C. unshiu peel (WECU) on human breast cancer MCF-7 cells and investigated the underlying mechanism. Our results showed that reduction of MCF-7 cell survival by WECU was associated with the induction of apoptosis. WECU-induced apoptotic cell death was related to the activation of caspase-8 and -9, representative initiate caspases of extrinsic and intrinsic apoptosis pathways, respectively, and increase in the Bax : Bcl-2 ratio accompanied by cleavage of poly(ADP-ribose) polymerase (PARP). WECU also increased the mitochondrial dysfunction and cytosolic release of cytochrome c. In addition, AMP-activated protein kinase (AMPK) and its downstream target molecule, acetyl-CoA carboxylase, were activated in a concentration-dependent manner in WECU-treated cells. In contrast, compound C, an AMPK inhibitor, significantly inhibited WECU-induced apoptosis, while inhibiting increased expression of Bax and decreased expression of Bcl-2 by WECU and inhibition of WECU-induced PARP degradation. Furthermore, WECU provoked the production of reactive oxygen species (ROS); however, the activation of AMKP and apoptosis by WECU were prevented, when the ROS production was blocked by antioxidant N-acetyl cysteine. Therefore, our data indicate that WECU suppresses MCF-7 cell proliferation by activating the intrinsic and extrinsic apoptosis pathways through ROS-dependent AMPK pathway activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/metabolismo , Citrus , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Frutas , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos
6.
Nutr Res Pract ; 12(2): 129-134, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29629029

RESUMEN

BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

7.
Mol Med Rep ; 16(4): 3841-3848, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29067461

RESUMEN

Mori folium, the leaf of Morus alba L. (Moraceae), has been widely used in traditional medicine for the treatment of various diseases. It has been recently reported that Mori folium possesses potential chondroprotective effects in interleukin (IL)­1ß­stimulated human chondrocytes; however, its protective and therapeutic potential against osteoarthritis (OA) in an animal model remains unclear. In this study, as part of an ongoing screening program to evaluate the anti­osteoarthritic potential of Mori folium, the protective effects of a water extract of Mori folium (MF) on cartilage degradation and inflammatory responses in a monosodium iodoacetate (MIA)­induced OA rat model were evaluated. The results demonstrated that administration of MF had a tendency to attenuate the damage to articular cartilage induced by MIA, as determined by knee joint swelling and the histological grade of OA. The elevated levels of matrix metalloproteinases­13 and two bio­markers for the diagnosis and progression of OA, such as the cartilage oligomeric matrix protein and C­telopeptide of type II collagen, were markedly ameliorated by MF administration in MIA­induced OA rats. In addition, MF significantly suppressed the production of pro­inflammatory cytokines, including IL­1ß, IL­6 and tumor necrosis factor­α. MF also effectively inhibited the expression of inducible nitric oxide (NO) synthase and cyclooxygenase­2, thus inhibiting the release of NO and prostaglandin E2. Although further work is required to fully understand the critical role and clinical usefulness, these findings indicate that MF may be a potential therapeutic option for the treatment of OA.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Citocinas/metabolismo , Morus/química , Osteoartritis/patología , Extractos Vegetales/farmacología , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Celecoxib/farmacología , Celecoxib/uso terapéutico , Citocinas/análisis , Dinoprostona/sangre , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Interleucina-1beta/sangre , Interleucina-6/sangre , Yodoacetatos/toxicidad , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Morus/metabolismo , Óxido Nítrico/sangre , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/sangre
8.
Biosci Trends ; 11(5): 565-573, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29070760

RESUMEN

Citrus unshiu peel has been used to prevent and treat various diseases in traditional East-Asian medicine including in Korea. Extracts of C. unshiu peel are known to have various pharmacological effects including antioxidant, anti-inflammatory, and antibacterial properties. Although the possibility of their anti-cancer activity has recently been reported, the exact mechanisms in human cancer cells have not been sufficiently studied. In this study, the inhibitory effect of ethanol extract of C. unshiu peel (EECU) on the growth of human bladder cancer T24 cells was evaluated and the underlying mechanism was investigated. The present study demonstrated that the suppression of T24 cell viability by EECU is associated with apoptosis induction. EECU-induced apoptosis was found to correlate with an activation of caspase-8, -9, and -3 in concomitance with a decrease in the expression of the inhibitor of apoptosis family of proteins and an increase in the Bax:Bcl-2 ratio accompanied by the proteolytic degradation of poly(ADP-ribose) polymerase. EECU also increased the generation of reactive oxygen species (ROS), collapse of mitochondrial membrane potential, and cytochrome c release to the cytosol, along with a truncation of Bid. In addition, EECU inactivated phosphatidylinositol 3-kinase (PI3K) as well as Akt, a downstream molecular target of PI3K, and LY294002, a specific PI3K inhibitor significantly enhanced EECU-induced apoptosis and cell viability reduction. However, N-acetyl cysteine, a general ROS scavenger, completely reversed the EECU-induced dephosphorylation of PI3K and Akt, as well as cell apoptosis. Taken together, these findings suggest that EECU inhibits T24 cell proliferation by activating intrinsic and extrinsic apoptosis pathways through a ROS-mediated inactivation of the PI3K/Akt pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Citrus/química , Elafina/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos Fitogénicos/aislamiento & purificación , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Etanol/química , Humanos , Extractos Vegetales/aislamiento & purificación , Transducción de Señal , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
9.
An Acad Bras Cienc ; 89(1 Suppl 0): 661-674, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28562828

RESUMEN

Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.


Asunto(s)
Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Morus/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Pez Cebra , Animales , Expresión Génica , Genes Reguladores , Mediadores de Inflamación/antagonistas & inhibidores , Lipopolisacáridos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Prostaglandinas E/metabolismo , Células RAW 264.7 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
EXCLI J ; 16: 265-277, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507472

RESUMEN

Schisandrae Fructus, the fruit of Schisandra chinensis (Turcz.) Baill., is widely used in traditional medicine for the treatment of a number of chronic diseases. Although, Schisandrae Fructus was recently reported to attenuate the interleukin (IL)-1ß-induced inflammatory response in chondrocytes in vitro, its protective and therapeutic potential against osteoarthritis (OA) in an animal model remains unclear. Therefore, we investigated the effects of the ethanol extract of Schisandrae Fructus (SF) on inflammatory responses and cartilage degradation in a monosodium iodoacetate (MIA)-induced OA rat model. Our results demonstrated that administration with SF had a tendency to attenuate MIA-induced damage of articular cartilage as determined by a histological grade of OA. SF significantly suppressed the production of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α in MIA-induced OA rats. SF also effectively inhibited expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, thereby inhibiting the release of NO and prostaglandin E2. In addition, the elevated levels of matrix metalloproteinases-13 and two biomarkers for diagnosis and progression of OA, such as cartilage oligomeric matrix protein and C-telopeptide of type II collagen, were markedly ameliorated by SF administration. These findings indicate that SF could be a potential candidate for the treatment of OA.

11.
An. acad. bras. ciênc ; 89(1,supl): 661-674, May. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-886670

RESUMEN

ABSTRACT Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.


Asunto(s)
Animales , Ratas , Pez Cebra , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Morus/química , Macrófagos/efectos de los fármacos , Prostaglandinas E/metabolismo , Expresión Génica , Genes Reguladores , Lipopolisacáridos , Mediadores de Inflamación/antagonistas & inhibidores , Células RAW 264.7 , Macrófagos/metabolismo , Óxido Nítrico/metabolismo
12.
J Cancer Prev ; 21(3): 144-151, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27722140

RESUMEN

BACKGROUND: Immunoregulatory elements have emerged as useful immunotherapeutic agents against cancer. In traditional medicine, Mori folium, the leaf of Morus alba L. (Moraceae), has been used for various medicinal purposes; however, the immunomodulatory effects have not been fully identified. We evaluated the immunoenhancing potential of water extract of Mori folium (WEMF) in murine RAW264.7 macrophages. METHODS: RAW264.7 cells were treated with WEMF for 24 hours and cell viability was detected by an MTT method. Nitric oxide (NO) levels in the culture supernatants were assayed using Griess reagent. The productions of prostaglandin E2 (PGE2) and immune-related cytokines was measured using ELISA detection kits. The mRNA and protein expression levels of Inducible NO synthase, COX-2, and cytokines were assayed by reverse transcription-PCR and Western blotting, respectively. The effect of WEMF on phagocytic activity was measured using a Phagocytosis Assay Kit. RESULTS: WEMF significantly stimulated the production of NO and PGE2 as immune response parameters at noncytotoxic concentrations, which was associated with the increased expression of inducible NO synthase and COX-2. The release and expression of cytokines, such as TNF-α, interleukin (IL)-1ß, IL-6, and IL-10, were also significantly increased in response to treatment with WEMF. Moreover, WEMF promoted the macrophagic differentiation of RAW264.7 cells and the resulting phagocytosis activity. CONCLUSIONS: WEMF has the potential to modulate the immune function by regulating immunological parameters. Further studies are needed to identify the active compounds and to support the use of WEMF as an immune stimulant.

13.
Drug Dev Res ; 76(8): 474-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26443270

RESUMEN

Proinflammatory cytokine interleukin-1 beta (IL-1ß) plays a crucial role in the pathogenesis of osteoarthritis (OA) by stimulating several mediators that contribute to cartilage degradation. Schisandrae Fructus (SF), the dried fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae), is widely used in traditional medicine for the treatment of a number of chronic inflammatory diseases. This study investigated the antiosteoarthritis properties of an ethanol extract of SF on IL-1ß-stimulated SW1353 chondrocytes. SF attenuated IL-1ß-induced expression and activity of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 and also reduced the elevated levels of cyclooxygenase-2 and inducible nitric oxide synthase associated with the inhibition of prostaglandin E2 and nitric oxide production in IL-1ß-stimulated SW1353 chondrocytes. In addition, SF markedly suppressed the nuclear translocation of nuclear factor-kappa B (NF-κB) by blocking inhibitor κB-alpha degradation and inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results indicate that the inhibitory effect of SF on IL-1ß-stimulated expression of MMPs and inflammatory mediators production in SW1353 cells were associated with the suppression of the NF-κB and JNK/p38 MAPK signaling pathways. The results from this study indicate that SF may have therapeutic potential for the treatment of OA due to its anti-inflammatory and chondroprotective features.


Asunto(s)
Condrocitos/efectos de los fármacos , Interleucina-1beta/antagonistas & inhibidores , Metaloproteinasas de la Matriz/biosíntesis , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Extractos Vegetales/farmacología , Schisandra/química , Línea Celular , Condrocitos/inmunología , Condrocitos/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Interacciones Farmacológicas , Inducción Enzimática/efectos de los fármacos , Frutas/química , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Interleucina-1beta/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoartritis/tratamiento farmacológico , Fosforilación/efectos de los fármacos
14.
Mol Med Rep ; 12(1): 1314-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25760758

RESUMEN

Zanthoxylum schinifolium is widely used as a food flavoring in east Asia. Although this plant has also been used in traditional oriental medicine for the treatment of the common cold, toothache, stomach ache, diarrhea and jaundice, its anti-obesity activity remains to be elucidated. The present study investigated the effects of ethanol extract from the leaves of Z. schinifolium (EEZS) on adipocyte differentiation, and its underlying mechanism, in 3T3-L1 pre-adipocytes. The results demonstrated that EEZS effectively suppressed intracellular lipid accumulation at non-toxic concentrations, and was associated with the downregulation of several adipocyte-specific transcription factors, including peroxisome proliferation-activity receptor γ (PPARγ), CCAAT/enhancer binding protein (C/EBP)α and C/EBPß, in a concentration-dependent manner. Furthermore, it was observed that EEZS markedly inactivated the extracellular signal-regulated protein kinase (ERK) and phosphatidylinositide 3-kinase (PI3K)/Akt pathways, which act upstream of PPARγ and C/EBPs in adipogenesis. These results suggested that EEZS inhibited lipid accumulation by downregulating the major transcription factors involved in the pathway of adipogenesis, including PPARγ, C/EBPα and C/EBPß, via regulation of the ERK and PI3K/Akt signaling pathways in 3T3-L1 adipocyte differentiation. This indicated the potential use of EEZS as an anti-obesity agent.


Asunto(s)
Adipocitos/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Fosfatidilinositol 3-Quinasas/genética , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Zanthoxylum/química , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Fármacos Antiobesidad/química , Proteína beta Potenciadora de Unión a CCAAT/antagonistas & inhibidores , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Etanol , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Ratones , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , PPAR gamma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA